OFFSET
1,2
COMMENTS
First differs from A071562 at a(12) = 21 here, there a(12) = 24.
EXAMPLE
6 is in the sequence because the symmetric representation of sigma(6) has only one part. The 11 widths of 6 are [1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1]. The sum of them is A000203(6) = 12.
9 is in the sequence because the symmetric representation of sigma(9) has three parts. The 17 widths of 9 are [1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1]. The sum of them is A000203(9) = 13.
78 is in the sequence because the symmetric representation of sigma(78) has two parts but not all their widths are one since 14 widths are two. The 155 widths of 78 are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], the same as the 78th row of A249351. The sum of the widths is equal to A000203(78) = 168.
14 is not in the sequence because the symmetric representation of sigma(14) has two parts, each of width one. The 27 widths of 14 are [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], the same as the 14th row of A249351. The sum of the widths is equal to A000203(14) = 24.
For the definition of "width" see A249351.
MATHEMATICA
(* functions a237048 and a237270 are defined in the respective sequences *)
a249223[n_] :=Drop[FoldList[Plus, 0, Map[(-1)^(#+1) a237048[n, #]&, Range[row[n]]]], 1]
a347262[n_] := Select[Range[n], Length[a237270[#]]!=2||Max[a249223[#]]!=1&]
a347262[114] (* Hartmut F. W. Hoft, Jul 20 2022 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Omar E. Pol, Aug 28 2021
STATUS
approved