OFFSET
0,1
COMMENTS
a(41) > 10^5 if it is not 0.
Conjecture: First zeros of the sequence are a(41), a(666), a(1277), a(2701), ... - Giorgos Kalogeropoulos, Sep 23 2021
EXAMPLE
a(3) = 31 because the prime 31 can be obtained in exactly 3 ways:
31 = 9+2*11 = 21+2*5 = 25+2*3
and this is the least such prime.
MAPLE
N:= 10000: # to search values up to N
P:= select(isprime, [2, seq(i, i=3..N, 2)]):
S:= select(t -> numtheory:-bigomega(t)=2, [$1..N]):
V:= Vector(N):
for p in P do
for s in S do
r:= s+2*p;
if r > N then break fi;
V[r]:= V[r]+1
od
od:
m:= min({$0..max(V[P])} minus convert(V[P], set))-1:
M:= Array(0..m):
for p in P do
v:= V[p];
if v <= m and M[v] = 0 then M[v]:= p fi
od:
convert(M, list);
MATHEMATICA
Table[k=2; While[Length@Select[k-2Prime@Range@PrimePi@Floor[k/2], PrimeOmega@#==2&]!=n, k=NextPrime@k]; k, {n, 0, 40}] (* Giorgos Kalogeropoulos, Sep 23 2021 *)
CROSSREFS
KEYWORD
nonn,more
AUTHOR
J. M. Bergot and Robert Israel, Aug 24 2021
STATUS
approved