[go: up one dir, main page]

login
A346475
a(n) = A342919(A276086(n)).
4
0, 1, 1, 5, 1, 7, 1, 7, 1, 31, 13, 41, 1, 1, 11, 37, 2, 47, 1, 11, 7, 43, 19, 53, 2, 13, 17, 49, 11, 59, 1, 3, 5, 41, 17, 55, 1, 59, 71, 247, 53, 317, 19, 73, 23, 289, 127, 359, 13, 29, 113, 331, 37, 401, 11, 101, 67, 373, 169, 443, 1, 11, 13, 47, 5, 61, 17, 23, 43, 277, 121, 347, 1, 83, 107, 319, 71, 389, 31, 97, 2, 361, 163
OFFSET
0,4
COMMENTS
For n >= 1, each term a(n) is a divisor of A342002(n).
FORMULA
a(n) = A342919(A276086(n)).
a(n) = A327860(n) / gcd(A327860(n), A346470(n)).
PROG
(PARI)
A001615(n) = if(1==n, n, my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1))); \\ After code in A001615
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
A342919(n) = { my(u=A003415(n)); (u/gcd(u, A001615(n))); };
A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
CROSSREFS
Cf. also A342002, A345930, A346474 for sequences with similar scatter plots.
Sequence in context: A086892 A284150 A318676 * A346474 A353574 A265293
KEYWORD
nonn,base,look
AUTHOR
Antti Karttunen, Jul 21 2021
STATUS
approved