[go: up one dir, main page]

login
A344773
Number of divisors d of n for which A342915(d) = A342915(n), where A342915(n) = gcd(1+n, psi(n)).
3
1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 4, 1, 2, 1, 3, 1, 3, 1, 2, 1, 2, 1, 5, 1, 2, 2, 3, 1, 4, 1, 3, 1, 2, 1, 6, 1, 2, 1, 4, 1, 3, 1, 1, 2, 2, 1, 7, 1, 2, 2, 3, 1, 4, 1, 4, 1, 2, 1, 7, 1, 2, 1, 4, 2, 4, 1, 2, 1, 3, 1, 8, 1, 2, 2, 3, 1, 3, 1, 1, 2, 2, 1, 7, 1, 2, 1, 4, 1, 6, 1, 2, 1, 2, 1, 8, 1, 3, 2, 4, 1, 4, 1, 1, 2
OFFSET
1,4
LINKS
FORMULA
a(n) = Sum_{d|n} [A342915(d) = A342915(n)], where [ ] is the Iverson bracket.
a(n) <= A344771(n).
PROG
(PARI)
A001615(n) = if(1==n, n, my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1))); \\ After code in A001615
A342915(n) = gcd(1+n, A001615(n));
A344773(n) = { my(x=A342915(n)); sumdiv(n, d, A342915(d)==x); };
CROSSREFS
Cf. also A344774.
Sequence in context: A185216 A247976 A280986 * A103689 A245039 A161313
KEYWORD
nonn
AUTHOR
Antti Karttunen, May 31 2021
STATUS
approved