OFFSET
1,1
COMMENTS
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are numbers whose only even prime index (counting multiplicity) is the smallest.
EXAMPLE
The sequence of partitions together with their Heinz numbers begins:
3: (2) 77: (5,4) 165: (5,3,2)
7: (4) 79: (22) 173: (40)
13: (6) 89: (24) 177: (17,2)
15: (3,2) 93: (11,2) 181: (42)
19: (8) 101: (26) 193: (44)
29: (10) 107: (28) 199: (46)
33: (5,2) 113: (30) 201: (19,2)
37: (12) 119: (7,4) 217: (11,4)
43: (14) 123: (13,2) 219: (21,2)
51: (7,2) 131: (32) 221: (7,6)
53: (16) 139: (34) 223: (48)
61: (18) 141: (15,2) 229: (50)
69: (9,2) 151: (36) 239: (52)
71: (20) 161: (9,4) 249: (23,2)
75: (3,3,2) 163: (38) 251: (54)
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
Select[Range[2, 100], EvenQ[First[primeMS[#]]]&&And@@OddQ[Rest[primeMS[#]]]&]
CROSSREFS
These partitions are counted by A087897, shifted left once.
Terms of A340933 can be factored into elements of this sequence.
The odd version is A341446.
A001222 counts prime factors.
A005843 lists even numbers.
A031215 lists even-indexed primes.
A055396 selects least prime index.
A056239 adds up prime indices.
A061395 selects greatest prime index.
A066207 lists numbers with all even prime indices.
A112798 lists the prime indices of each positive integer.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Feb 13 2021
STATUS
approved