[go: up one dir, main page]

login
A340363
a(n) = 1 if n is of the form of 2^i * p^j, with p an odd prime and i, j >= 0, otherwise 0.
5
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0
OFFSET
1
COMMENTS
a(n) = 1 if the odd part of n has no more than one distinct prime divisor, and 0 otherwise.
FORMULA
a(n) = A010055(A000265(n)).
a(n) = [A005087(n) <= 1], where [ ] is the Iverson bracket, and A005087(n) = A001221(A000265(n)).
a(n) = A209229(n) + A340373(n).
For all n, a(n) <= A340372(n).
MATHEMATICA
A340363[n_] := Boole[PrimeNu[n/2^IntegerExponent[n, 2]] < 2];
Array[A340363, 100] (* Paolo Xausa, Oct 31 2024 *)
PROG
(PARI)
A000265(n) = (n>>valuation(n, 2));
A340363(n) = (omega(A000265(n))<=1);
CROSSREFS
Characteristic function of {1} U A070776.
Sequence in context: A133011 A296079 A354806 * A340372 A167850 A167851
KEYWORD
nonn,changed
AUTHOR
Antti Karttunen, Jan 06 2021
STATUS
approved