[go: up one dir, main page]

login
A340050
Numbers that are the sum of a cube s and a fourth power t such that 0 < s < t.
1
17, 24, 82, 89, 108, 145, 257, 264, 283, 320, 381, 472, 626, 633, 652, 689, 750, 841, 968, 1137, 1297, 1304, 1323, 1360, 1421, 1512, 1639, 1808, 2025, 2296, 2402, 2409, 2428, 2465, 2526, 2617, 2744, 2913, 3130, 3401, 3732, 4097, 4104, 4123, 4129, 4160, 4221, 4312, 4439, 4598
OFFSET
1,1
EXAMPLE
24 is in the sequence since 2^3 + 2^4 = 8 + 16 = 24, where 0 < 8 < 16.
MATHEMATICA
Table[If[Sum[(Floor[i^(1/3)] - Floor[(i - 1)^(1/3)]) (Floor[(n - i)^(1/4)] - Floor[(n - i - 1)^(1/4)]), {i, Floor[(n - 1)/2]}] > 0, n, {}], {n, 1000}] // Flatten
CROSSREFS
Cf. A010057.
Sequence in context: A205697 A231963 A158803 * A051780 A124971 A272635
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Dec 26 2020
STATUS
approved