[go: up one dir, main page]

login
A340049
Numbers that are the sum of a fourth power s and a cube t such that 0 < s <= t.
0
2, 9, 28, 43, 65, 80, 126, 141, 206, 217, 232, 297, 344, 359, 424, 513, 528, 593, 599, 730, 745, 768, 810, 985, 1001, 1016, 1081, 1256, 1332, 1347, 1354, 1412, 1587, 1625, 1729, 1744, 1809, 1956, 1984, 2198, 2213, 2278, 2353, 2453, 2627, 2745, 2760, 2822, 2825, 3000
OFFSET
1,1
EXAMPLE
28 is in the sequence since 1^4 + 3^3 = 1 + 27 = 28, where 0 < 1 <= 27.
MATHEMATICA
Table[If[Sum[(Floor[i^(1/4)] - Floor[(i - 1)^(1/4)]) (Floor[(n - i)^(1/3)] - Floor[(n - i - 1)^(1/3)]), {i, Floor[n/2]}] > 0, n, {}], {n, 1000}] // Flatten
CROSSREFS
Cf. A010057.
Sequence in context: A155472 A100293 A202679 * A256467 A303373 A001093
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Dec 26 2020
STATUS
approved