OFFSET
0,6
COMMENTS
LINKS
Eric Weisstein's World of Mathematics, Graphical partition.
EXAMPLE
The a(3) = 1 through a(11) = 13 partitions (A = 10):
(21) (31) (32) (42) (43) (53) (54) (64) (65)
(41) (51) (52) (62) (63) (73) (74)
(61) (71) (72) (82) (83)
(3211) (3221) (81) (91) (92)
(4211) (3321) (4321) (A1)
(4221) (5221) (4322)
(4311) (5311) (4331)
(5211) (6211) (4421)
(5321)
(5411)
(6221)
(6311)
(7211)
For example, the partition y = (4,3,3,2,1,1) can be partitioned into a set of edges in two ways:
{{1,2},{1,3},{3,4}}
{{1,3},{1,4},{2,3}},
so y is counted under a(14).
MATHEMATICA
strs[n_]:=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[strs[n/d], Min@@#>d&]], {d, Select[Rest[Divisors[n]], And[SquareFreeQ[#], PrimeOmega[#]==2]&]}]];
Table[Length[Select[IntegerPartitions[n], strs[Times@@Prime/@#]!={}&]], {n, 0, 15}]
CROSSREFS
A338916 allows equal pairs (x,x).
A339559 counts the complement in even-length partitions.
A339561 gives the Heinz numbers of these partitions.
A339619 counts factorizations of the same type.
A002100 counts partitions into squarefree semiprimes.
A320655 counts factorizations into semiprimes.
A320656 counts factorizations into squarefree semiprimes.
A339659 counts graphical partitions of 2n into k parts.
The following count partitions of even length and give their Heinz numbers:
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Dec 10 2020
STATUS
approved