OFFSET
0,6
COMMENTS
These are also integer partitions that can be partitioned into not necessarily distinct edges (pairs of distinct parts). For example, (3,3,2,2) can be partitioned as {{2,3},{2,3}}, so is counted under a(10), but (4,2,2,2) and (4,2,1,1,1,1) cannot be partitioned into edges. The multiplicities of such a partition form a multigraphical partition (A209816, A320924).
LINKS
Eric Weisstein's World of Mathematics, Graphical partition.
EXAMPLE
The a(3) = 1 through a(10) = 11 partitions:
(21) (31) (32) (42) (43) (53) (54) (64)
(41) (51) (52) (62) (63) (73)
(2211) (61) (71) (72) (82)
(3211) (3221) (81) (91)
(3311) (3321) (3322)
(4211) (4221) (4321)
(4311) (4411)
(5211) (5221)
(222111) (5311)
(6211)
(322111)
MATHEMATICA
Table[Length[Select[IntegerPartitions[n], EvenQ[Length[#]]&&Max@@Length/@Split[#]<=Length[#]/2&]], {n, 0, 30}]
CROSSREFS
A096373 counts the complement in even-length partitions.
A320911 gives the Heinz numbers of these partitions.
A339560 is the strict case.
A339562 counts factorizations of the same type.
A002100 counts partitions into squarefree semiprimes.
A320656 counts factorizations into squarefree semiprimes.
The following count partitions of even length and give their Heinz numbers:
KEYWORD
nonn
AUTHOR
Gus Wiseman, Dec 09 2020
STATUS
approved