OFFSET
-1,1
FORMULA
Equals Sum_{k>=1} 1/(A106543(k)^2).
Equals zeta(2) - P(2) - 1 - Sum_{k>=2} mu(k)*(1-zeta(2*k)), where P(s) is the prime zeta function. - Amiram Eldar, Dec 03 2022
EXAMPLE
Equals 1/(6^2) + 1/(10^2) + 1/(12^2) + 1/(14^2) + ... = 0.092211319607067162105722850170097751152689718042181...
MATHEMATICA
perfPQ[n_] := GCD @@ FactorInteger[n][[All, 2]] > 1
scdc[n_] := 1/(Select[Range[n, n], CompositeQ[#] && ! perfPQ[#] &])
N[Total[ParallelTable[scdc[k]^2, {k, 2, 10^8}] /. {} -> Sequence[]], 100]
PROG
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Terry D. Grant, Sep 11 2020
EXTENSIONS
a(7)-a(16) from Jinyuan Wang, Nov 07 2020
More digits from Jon E. Schoenfield, Jan 26 2021
STATUS
approved