OFFSET
0,5
LINKS
Seiichi Manyama, Antidiagonals n = 0..139, flattened
FORMULA
T(n,k) = Sum_{j=0..n} k^j * binomial(2*n,2*j).
T(0,k) = 1, T(1,k) = k+1 and T(n,k) = 2 * (k+1) * T(n-1,k) - (k-1)^2 * T(n-2,k) for n>1.
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, ...
1, 2, 3, 4, 5, 6, ...
1, 8, 17, 28, 41, 56, ...
1, 32, 99, 208, 365, 576, ...
1, 128, 577, 1552, 3281, 6016, ...
1, 512, 3363, 11584, 29525, 62976, ...
MATHEMATICA
T[n_, 0] := 1; T[n_, k_] := Sum[k^j * Binomial[2*n, 2*j], {j, 0, n}]; Table[T[k, n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, Sep 04 2020 *)
PROG
(PARI) {T(n, k) = sum(j=0, n, k^j*binomial(2*n, 2*j))}
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Seiichi Manyama, Sep 04 2020
STATUS
approved