# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a333988 Showing 1-1 of 1 %I A333988 #25 Sep 05 2020 03:13:01 %S A333988 1,1,1,1,2,1,1,3,8,1,1,4,17,32,1,1,5,28,99,128,1,1,6,41,208,577,512,1, %T A333988 1,7,56,365,1552,3363,2048,1,1,8,73,576,3281,11584,19601,8192,1,1,9, %U A333988 92,847,6016,29525,86464,114243,32768,1,1,10,113,1184,10033,62976,265721,645376,665857,131072,1 %N A333988 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of (1-(k+1)*x) / (1-2*(k+1)*x+((k-1)*x)^2). %H A333988 Seiichi Manyama, Antidiagonals n = 0..139, flattened %F A333988 T(n,k) = Sum_{j=0..n} k^j * binomial(2*n,2*j). %F A333988 T(0,k) = 1, T(1,k) = k+1 and T(n,k) = 2 * (k+1) * T(n-1,k) - (k-1)^2 * T(n-2,k) for n>1. %e A333988 Square array begins: %e A333988 1, 1, 1, 1, 1, 1, ... %e A333988 1, 2, 3, 4, 5, 6, ... %e A333988 1, 8, 17, 28, 41, 56, ... %e A333988 1, 32, 99, 208, 365, 576, ... %e A333988 1, 128, 577, 1552, 3281, 6016, ... %e A333988 1, 512, 3363, 11584, 29525, 62976, ... %t A333988 T[n_, 0] := 1; T[n_, k_] := Sum[k^j * Binomial[2*n, 2*j], {j, 0, n}]; Table[T[k, n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* _Amiram Eldar_, Sep 04 2020 *) %o A333988 (PARI) {T(n, k) = sum(j=0, n, k^j*binomial(2*n, 2*j))} %Y A333988 Column k=0..9 give A000012, A081294, A001541, A090965, A083884, A099140, A099141, A099142, A165224, A026244. %Y A333988 Main diagonal gives A333990. %Y A333988 Cf. A009999, A307883, A337389, A333989. %K A333988 nonn,tabl %O A333988 0,5 %A A333988 _Seiichi Manyama_, Sep 04 2020 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE