[go: up one dir, main page]

login
A333864
Number of Hamiltonian cycles on an n X 2*n grid.
2
1, 4, 236, 18684, 32463802, 54756073582, 2365714170297014, 87106950271042689032, 88514516642574170326003422, 71598455565101470929617326988084, 1673219200189416324422979402201514800461, 29815394539834813572600735261571894552950941626
OFFSET
2,2
LINKS
Olga Bodroža-Pantić, B. Pantić, I. Pantić AND M. Bodroža-Solarov: Enumeration of Hamiltonian cycles in some grid grafs. MATCH Commun. Math. Comput. Chem. 70:1 (2013), 181-204. on Research Gate.
FORMULA
a(n) = A321172(n,2*n).
PROG
(Python)
# Using graphillion
from graphillion import GraphSet
import graphillion.tutorial as tl
def A333864(n):
universe = tl.grid(n - 1, 2 * n - 1)
GraphSet.set_universe(universe)
cycles = GraphSet.cycles(is_hamilton=True)
return cycles.len()
print([A333864(n) for n in range(2, 8)])
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Apr 08 2020
EXTENSIONS
a(10) and a(12) quoted from Olga's paper.
STATUS
approved