[go: up one dir, main page]

login
A332713
a(n) = Sum_{d|n} phi(d/gcd(d, n/d)).
4
1, 2, 3, 4, 5, 6, 7, 7, 8, 10, 11, 12, 13, 14, 15, 13, 17, 16, 19, 20, 21, 22, 23, 21, 22, 26, 22, 28, 29, 30, 31, 24, 33, 34, 35, 32, 37, 38, 39, 35, 41, 42, 43, 44, 40, 46, 47, 39, 44, 44, 51, 52, 53, 44, 55, 49, 57, 58, 59, 60, 61, 62, 56, 46, 65, 66, 67, 68, 69, 70
OFFSET
1,2
FORMULA
Dirichlet g.f.: zeta(s) * zeta(2*s) * zeta(s - 1) * Product_{p prime} (1 - p^(-s) + p^(-2*s) - p^(1 - 2*s)).
a(n) = Sum_{d|n} phi(lcm(d, n/d)/d).
a(n) = Sum_{d|n} A010052(n/d) * A055653(d).
Sum_{k=1..n} a(k) ~ c * Pi^6 * n^2 / 1080, where c = A330523 = Product_{primes p} (1 - 1/p^2 - 1/p^3 + 1/p^4) = 0.5358961538283379998085... - Vaclav Kotesovec, Feb 22 2020
From Richard L. Ollerton, May 10 2021: (Start)
a(n) = Sum_{k=1..n} phi(gcd(n,k)/gcd(gcd(n,k),n/gcd(n,k)))/phi(n/gcd(n,k)).
a(n) = Sum_{k=1..n} phi(n/gcd(n,k)/gcd(gcd(n,k),n/gcd(n,k)))/phi(n/gcd(n,k)).
a(n) = Sum_{k=1..n} phi(lcm(gcd(n,k),n/gcd(n,k))/gcd(n,k))/phi(n/gcd(n,k)).
a(n) = Sum_{k=1..n} phi(lcm(gcd(n,k),n/gcd(n,k))*gcd(n,k)/n)/phi(n/gcd(n,k)).
a(n) = Sum_{k=1..n} A010052(gcd(n,k))*A055653(n/gcd(n,k))/phi(n/gcd(n,k)).
a(n) = Sum_{k=1..n} A010052(n/gcd(n,k))*A055653(gcd(n,k))/phi(n/gcd(n,k)). (End)
MATHEMATICA
Table[Sum[EulerPhi[d/GCD[d, n/d]], {d, Divisors[n]}], {n, 1, 70}]
A055653[n_] := Sum[Boole[GCD[d, n/d] == 1] EulerPhi[d], {d, Divisors[n]}]; a[n_] := Sum[Boole[IntegerQ[(n/d)^(1/2)]] A055653[d], {d, Divisors[n]}]; Table[a[n], {n, 1, 70}]
PROG
(PARI) a(n) = sumdiv(n, d, eulerphi(d/gcd(d, n/d))); \\ Michel Marcus, Feb 20 2020
CROSSREFS
Cf. A000010, A001616, A010052, A046790 (numbers n such that a(n) < n), A055653, A061884, A078779 (fixed points), A332619, A332686, A332712.
Sequence in context: A124808 A238401 A337978 * A017862 A265539 A254926
KEYWORD
nonn,mult
AUTHOR
Ilya Gutkovskiy, Feb 20 2020
STATUS
approved