OFFSET
1,4
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000
FORMULA
Dirichlet g.f.: zeta(2*s)^2 * zeta(3*s) / zeta(6*s).
a(n) = Sum_{d|n} mu(lcm(d, n/d)/d).
a(n) = Sum_{d|n} (-1)^bigomega(n/d) * A005361(d).
Sum_{k=1..n} a(k) ~ zeta(3/2)*sqrt(n)*log(n)/(2*zeta(3)) + ((2*gamma - 1)*zeta(3/2) + 3*zeta'(3/2)/2 - 3*zeta(3/2)*zeta'(3)/zeta(3)) * sqrt(n)/zeta(3) + 6*zeta(2/3)^2 * n^(1/3)/Pi^2, where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Feb 21 2020
Multiplicative with a(p^e) = A028242(e). - Amiram Eldar, Nov 30 2020
MATHEMATICA
Table[Sum[MoebiusMu[d/GCD[d, n/d]], {d, Divisors[n]}], {n, 1, 100}]
A005361[n_] := Times @@ (#[[2]] & /@ FactorInteger[n]); a[n_] := Sum[(-1)^PrimeOmega[n/d] A005361[d], {d, Divisors[n]}]; Table[a[n], {n, 1, 100}]
f[p_, e_] := 3*Floor[e/2] - e + 1; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Nov 30 2020 *)
PROG
(PARI) a(n) = sumdiv(n, d, moebius(d/gcd(d, n/d))); \\ Michel Marcus, Feb 20 2020
CROSSREFS
KEYWORD
nonn,mult
AUTHOR
Ilya Gutkovskiy, Feb 20 2020
STATUS
approved