[go: up one dir, main page]

login
A331197
Number of nonnegative integer matrices with 2 distinct columns and any number of nonzero rows with each column sum being n and rows in nonincreasing lexicographic order.
3
0, 1, 7, 28, 104, 332, 1032, 2983, 8384, 22622, 59479, 151902, 379616, 927521, 2224100, 5236410, 12130549, 27669296, 62229605, 138095206, 302672402, 655627183, 1404598865, 2977830134, 6251059210, 12999297747, 26791987616, 54750232180, 110977385294, 223204454700, 445590973235
OFFSET
0,3
COMMENTS
The condition that the rows be in nonincreasing order is equivalent to considering nonequivalent matrices up to permutation of rows.
LINKS
FORMULA
a(n) = A002774(n) - A000041(n).
EXAMPLE
The a(2) = 7 matrices are:
[2 1] [2 0] [1 2] [1 1] [2 0] [1 0] [1 0]
[0 1] [0 2] [1 0] [1 0] [0 1] [1 0] [1 0]
[0 1] [0 1] [0 2] [0 1]
[0 1]
See the example in A331197 for the a(3) = 28 case.
CROSSREFS
Column k=2 of A331161.
Sequence in context: A219411 A224404 A370487 * A024207 A000416 A000417
KEYWORD
nonn
AUTHOR
Andrew Howroyd, Jan 11 2020
STATUS
approved