[go: up one dir, main page]

login
A330272
a(n) is the least nonnegative integer k such that n OR k is a cube (where OR denotes the bitwise OR operator).
2
0, 0, 25, 24, 121, 120, 337, 336, 0, 18, 17, 16, 113, 112, 3361, 3360, 11, 10, 9, 8, 105, 104, 321, 320, 3, 2, 1, 0, 97, 96, 29761, 29760, 93, 92, 1297, 1296, 89, 88, 3337, 3336, 85, 84, 3333, 3332, 81, 80, 3329, 3328, 77, 76, 1281, 1280, 73, 72, 59265, 59264
OFFSET
0,3
COMMENTS
The sequence is well defined:
- for any k >= 0, the binary expansion of m = A000225(k)^3 has k trailing 1's,
- hence for any n < 2^k, n OR m = m, which is a cube, QED.
FORMULA
a(n) = 0 iff n is a cube.
a(n) AND n = 0 (where AND denotes the bitwise AND operator).
MATHEMATICA
A330272[n_] := Module[{k = -1}, While[!IntegerQ[CubeRoot[BitOr[n, ++k]]]]; k];
Array[A330272, 60, 0] (* Paolo Xausa, Feb 20 2024 *)
PROG
(PARI) See Links section.
CROSSREFS
See A330271 for the XOR variant.
Sequence in context: A022981 A023467 A158501 * A194219 A291434 A291476
KEYWORD
nonn,base
AUTHOR
Rémy Sigrist, Dec 08 2019
STATUS
approved