[go: up one dir, main page]

login
A329723
Coefficients of expansion of (1-2x^3)/(1-x-x^2) in powers of x.
2
1, 1, 2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, 521, 843, 1364, 2207, 3571, 5778, 9349, 15127, 24476, 39603, 64079, 103682, 167761, 271443, 439204, 710647, 1149851, 1860498, 3010349, 4870847, 7881196, 12752043, 20633239, 33385282, 54018521, 87403803, 141422324, 228826127
OFFSET
0,3
COMMENTS
Two terms 1, 1 followed by the Lucas sequence (A000032), i.e., A000032(n) = a(n+2). The run length transform is given by Sum_{k=0..n} ((binomial(n+2k,2n-k)*binomial(n,k)) mod 2) (A329722).
FORMULA
a(n) = A000032(n-2) for n > 1.
a(n) = a(n-1) + a(n-2) for n > 3. - Chai Wah Wu, Feb 04 2022
MATHEMATICA
CoefficientList[Series[(1 - 2 x^3)/(1 - x - x^2), {x, 0, 42}], x] (* Michael De Vlieger, Feb 04 2022 *)
PROG
(Python)
from sympy import lucas
def A329723(n): return 1 if n <= 1 else lucas(n-2) # Chai Wah Wu, Feb 04 2022
CROSSREFS
Sequence in context: A268615 A061084 A000032 * A267551 A055391 A177940
KEYWORD
nonn,easy
AUTHOR
Chai Wah Wu, Nov 19 2019
STATUS
approved