[go: up one dir, main page]

login
A329416
Among the pairwise sums of any ten consecutive terms there are exactly two prime sums: lexicographically earliest such sequence of distinct positive numbers.
14
1, 2, 3, 7, 13, 19, 23, 25, 31, 32, 17, 8, 26, 37, 43, 49, 14, 38, 55, 61, 11, 20, 35, 67, 73, 79, 57, 9, 5, 15, 21, 42, 27, 12, 33, 30, 39, 45, 47, 18, 48, 6, 51, 24, 63, 69, 72, 75, 16, 36, 54, 60, 22, 66, 10, 4, 40, 29, 28, 34, 44, 41, 46, 50, 52, 58, 64, 53, 70, 71, 59, 62, 76, 56, 82, 88, 94, 65, 100
OFFSET
1,2
COMMENTS
Conjectured to be a permutation of the positive integers: a(10^6) = 10^6 + 2 and all numbers up to 10^6 - 7 have appeared at that point. - M. F. Hasler, Nov 15 2019
LINKS
EXAMPLE
a(1) = 1 is the smallest possible choice, there's no restriction on the first term.
a(2) = 2 as 2 is the smallest available integer not leading to a contradiction. Note that as 1 + 2 = 3 we already have one prime sum (on the required two) with the 10-set {1,2,a(3),a(4),a(5),a(6),a(7),a(8),a(9),a(10)}.
a(3) = 3 as 3 is the smallest available integer not leading to a contradiction. Note that as 2 + 3 = 5 we now have the two prime sums required with the 10-set {1,2,a(3),a(4),a(5),a(6),a(7),a(8),a(9),a(10)}.
a(4) = 7 as a(4) = 4, 5 or 6 would lead to a contradiction: indeed, the 10-sets {1,2,3,4,a(5),a(6),a(7),a(8),a(9),a(10)}, {1,2,3,5,a(5),a(6),a(7),a(8),a(9),a(10)} and {1,2,3,6,a(5),a(6),a(7),a(8),a(9),a(10)} will produce more than the two required prime sums. With a(4) = 7 we have no contradiction as the 10-set {1,2,3,7,a(5),a(6),a(7),a(8),a(9),a(10)} has now two prime sums so far: 1 + 2 = 3 and 2 + 3 = 5.
a(5) = 13 as a(5) = 4, 5, 6, 8, 9, 10, 11 or 12 would again lead to a contradiction (more than 2 prime sums with the 10-set); in combination with any other term before it, a(5) = 13 will produce only composite sums.
a(6) = 19 as 19 is the smallest available integer not leading to a contradiction: indeed, the 10-set {1,2,3,7,13,19,a(7),a(8),a(9),a(10)} shows two prime sums so far: 1 + 2 = 3 and 2 + 3 = 5.
a(7) = 23 as 23 is the smallest available integer not leading to a contradiction; indeed, the 10-set {1,2,3,7,13,19,23,a(8),a(9),a(10)} shows only two prime sums so far, which are 1 + 2 = 3 and 2 + 3 = 5.
a(8) = 25 as 25 is the smallest available integer not leading to a contradiction and producing two prime sums so far with the 10-set {1,2,3,7,13,19,23,25,a(9),a(10)}; etc.
PROG
(PARI) A329416(n, show=0, o=1, N=2, M=9, p=[], U, u=o)={for(n=o, n-1, show&&print1(o", "); U+=1<<(o-u); U>>=-u+u+=valuation(U+1, 2); p=concat(if(#p>=M, p[^1], p), o); my(c=N-sum(i=2, #p, sum(j=1, i-1, isprime(p[i]+p[j])))); if(#p<M&&sum(i=1, #p, isprime(p[i]+u))<=c, o=u)|| for(k=u, oo, bittest(U, k-u)|| sum(i=1, #p, isprime(p[i]+k))!=c||[o=k, break])); print([u]); o} \\ Optional args: show=1: print terms a(o..n-1); o=0: start with a(0)=0; N, M: produce N primes using M+1 consecutive terms. - M. F. Hasler, Nov 15 2019
CROSSREFS
Cf. A329333 (3 consecutive terms, exactly 1 prime sum).
Cf. A329405 (no prime among the pairwise sums of 3 consecutive terms).
Cf. A329406 .. A329410 (exactly 1 prime sum using 4, ..., 10 consecutive terms).
Cf. A329411 .. A329415 (exactly 2 prime sums using 3, ..., 7 consecutive terms).
See also "nonnegative" variants: A329450 (0 primes using 3 terms), A329452 (2 primes using 4 terms), A329453 (2 primes using 5 terms), A329454 (3 primes using 4 terms), A329449 (4 primes using 4 terms), A329455 (3 primes using 5 terms), A329456 (4 primes using 5 terms).
Sequence in context: A068948 A329414 A329415 * A155479 A019411 A105792
KEYWORD
nonn
AUTHOR
STATUS
approved