[go: up one dir, main page]

login
A328597
Number of necklace compositions of n where every pair of adjacent parts (including the last with the first) is relatively prime.
8
1, 1, 2, 3, 5, 8, 12, 21, 33, 57, 94, 167, 279, 491, 852, 1507, 2647, 4714, 8349, 14923, 26642, 47793, 85778, 154474, 278322, 502715, 908912, 1646205, 2984546, 5418652, 9847189, 17916000, 32625617, 59470539, 108493149, 198094482, 361965238, 661891579, 1211162270
OFFSET
1,3
COMMENTS
A necklace composition of n is a finite sequence of positive integers summing to n that is lexicographically minimal among all of its cyclic rotations.
LINKS
FORMULA
a(n > 1) = A318728(n) - 1.
EXAMPLE
The a(1) = 1 through a(7) = 12 necklace compositions:
(1) (1,1) (1,2) (1,3) (1,4) (1,5) (1,6)
(1,1,1) (1,1,2) (2,3) (1,1,4) (2,5)
(1,1,1,1) (1,1,3) (1,2,3) (3,4)
(1,1,1,2) (1,3,2) (1,1,5)
(1,1,1,1,1) (1,1,1,3) (1,1,1,4)
(1,2,1,2) (1,1,2,3)
(1,1,1,1,2) (1,1,3,2)
(1,1,1,1,1,1) (1,2,1,3)
(1,1,1,1,3)
(1,1,2,1,2)
(1,1,1,1,1,2)
(1,1,1,1,1,1,1)
MATHEMATICA
neckQ[q_]:=Array[OrderedQ[{q, RotateRight[q, #]}]&, Length[q]-1, 1, And];
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n], neckQ[#]&&And@@CoprimeQ@@@Partition[#, 2, 1, 1]&]], {n, 10}]
PROG
(PARI)
b(n, q, pred)={my(M=matrix(n, n)); for(k=1, n, M[k, k]=pred(q, k); for(i=1, k-1, M[i, k]=sum(j=1, k-i, if(pred(j, i), M[j, k-i], 0)))); M[q, ]}
seq(n)={my(v=sum(k=1, n, k*b(n, k, (i, j)->gcd(i, j)==1))); vector(n, n, sumdiv(n, d, eulerphi(d)*v[n/d])/n)} \\ Andrew Howroyd, Oct 26 2019
CROSSREFS
The non-necklace version is A328609.
The non-necklace non-circular version is A167606.
The version with singletons is A318728.
The aperiodic case is A318745.
The indivisible (instead of coprime) version is A328600.
The non-coprime (instead of coprime) version is A328602.
Necklace compositions are A008965.
Sequence in context: A274376 A018149 A152909 * A118604 A261694 A287533
KEYWORD
nonn
AUTHOR
Gus Wiseman, Oct 23 2019
EXTENSIONS
Terms a(21) and beyond from Andrew Howroyd, Oct 26 2019
STATUS
approved