[go: up one dir, main page]

login
A327875
Numbers k such that s(k) = s(k+1) where s(k) is the sum of unitary, squarefree divisors of k, including 1 (A092261).
1
8, 14, 288, 675, 735, 957, 1334, 1634, 2685, 2871, 5750, 8055, 9800, 12104, 12167, 20145, 33998, 42818, 71994, 74918, 79826, 79833, 84134, 111506, 122073, 138237, 144990, 147454, 166934, 201597, 235224, 274533, 289454, 324423, 332928, 347738, 383594, 400315
OFFSET
1,1
LINKS
FORMULA
8 is in the sequence since A092261(8) = A092261(9) = 1.
MATHEMATICA
f[p_, e_] := If[e==1, p+1, 1]; s[n_] := Times @@ f @@@ FactorInteger[n]; s1=0; seq = {}; Do[s2 = s[n]; If[s1 == s2, AppendTo[seq, n-1]]; s1 = s2, {n, 1, 10000}]; seq
PROG
(PARI) s(n)={sumdiv(n, d, d*issquarefree(d)*(gcd(d, n/d) == 1))}
{ for(k=1, 10^6, if(s(k)==s(k+1), print1(k, ", "))) } \\ Andrew Howroyd, Sep 28 2019
KEYWORD
nonn
AUTHOR
Amiram Eldar, Sep 28 2019
STATUS
approved