[go: up one dir, main page]

login
A293183
Numbers k such that bsigma(k) = bsigma(k+1), where bsigma(k) is the sum of the bi-unitary divisors of k (A188999).
25
14, 27, 44, 459, 620, 957, 1334, 1634, 1652, 2204, 2685, 3195, 3451, 3956, 5547, 8636, 8907, 9844, 11515, 11745, 16874, 19491, 20145, 20155, 27643, 31724, 33998, 38180, 41265, 41547, 42818, 45716, 48364, 64665, 74875, 74918, 79316, 79826, 79833, 83780, 84134
OFFSET
1,1
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..2148 (terms below 2*10^10)
EXAMPLE
14 is in the sequence since bsigma(14) = bsigma(15) = 24.
MATHEMATICA
f[n_] := Select[Divisors[n], Function[d, CoprimeQ[d, n/d]]]; bsigma[m_] :=
DivisorSum[m, # &, Last@Intersection[f@#, f[m/#]] == 1 &]; a = {}; b1 = 0; Do[b2 = bsigma[k]; If[b1 == b2, a = AppendTo[a, k - 1]]; b1 = b2, {k, 1, 10^6}]; a (* after Michael De Vlieger at A188999 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Amiram Eldar, Oct 01 2017
STATUS
approved