[go: up one dir, main page]

login
A327360
Minimal numerator among the fractions with n-digit numerator and n-digit denominator that best approximate Pi.
2
3, 44, 355, 3195, 99733, 833719, 5419351, 80143857, 657408909, 6167950454, 42106686282, 983339177173, 8958937768937, 94960529682104, 428224593349304, 6134899525417045, 66627445592888887, 430010946591069243, 5293386250278608690, 31760317501671652140
OFFSET
1,1
REFERENCES
O. Zelenyak, Programming workshop on Turbo Pascal: Tasks, Algorithms and Solutions, Litres, 2018, page 255. (Provides first 8 terms. Also contains similar sequences for sqrt(2) and e.)
LINKS
Jon E. Schoenfield, Magma program
EXAMPLE
The fractions with 2-digit numerators and 2-digit denominators that best approximate Pi are 44/14 and 88/28. The fraction with 6-digit numerator and 6-digit denominator that best approximates Pi is 833719/265381.
MATHEMATICA
(* Given the 8th term, find the 9th term *)
(* This took twelve-plus hours to run on a laptop *)
ResultList = {};
nVal = 9;
tol = Abs[80143857/25510582 - Pi]; (* 80143857 is A327360(8), 25510582 is A327361(8) *)
Do[
CurrentNumerator = i;
Do[
CurrentDenominator = j;
CurrentQuotient = N[CurrentNumerator/CurrentDenominator];
If[
Abs[CurrentQuotient - Pi] <= tol,
ResultList = Append[ResultList, {CurrentNumerator, CurrentDenominator}]
],
{j, Floor[i/(Pi + tol)], Floor[i/(Pi - tol)] + 1}],
{i, Floor[(Pi - tol)*10^(nVal - 1)], (10^nVal - 1)}];
DifferenceList =
Table[
Abs[ResultList[[i, 1]]/ResultList[[i, 2]] - Pi],
{i, 1, Length[ResultList]}];
Extract[ResultList, Position[DifferenceList, Min[DifferenceList]]]
CROSSREFS
A327361 gives the corresponding denominators.
Cf. A072398/A072399, which gives the best rational approximation to Pi subject to a different constraint.
Sequence in context: A133073 A055539 A046946 * A092545 A353878 A359631
KEYWORD
base,frac,nonn
AUTHOR
Jason Zimba, Sep 03 2019
EXTENSIONS
Terms a(10) and beyond from Jon E. Schoenfield, Mar 11 2021
STATUS
approved