[go: up one dir, main page]

login
A325919
Number of Motzkin meanders of length n with an odd number of humps and without peaks.
1
0, 0, 0, 1, 5, 18, 56, 160, 432, 1121, 2827, 6988, 17052, 41334, 100082, 243205, 595313, 1471278, 3674756, 9272410, 23605202, 60513201, 155893167, 402819550, 1042358942, 2697994240, 6979913196, 18041181065, 46583002021, 120161923640, 309719942306
OFFSET
0,5
COMMENTS
A Motzkin meander is a lattice path with steps from the set {D=-1, H=0, U=1} that starts at (0,0), and never goes below the x-axis.
A peak is an occurrence of the pattern UD.
A hump is an occurrence of the pattern UHH...HD (the number of Hs in the pattern is not fixed, and can be 0).
FORMULA
G.f.: (1/4)*(t^3-4*t^2+4*t-1+sqrt(t^6-4*t^5+4*t^4-2*t^3+4*t^2-4*t+1))/((-t^3+4*t^2-4*t+1)*t)-(1/4)*(-t^3-4*t^2+4*t-1+sqrt(t^6+4*t^5-4*t^4+2*t^3+4*t^2-4*t+1))/((t^3+4*t^2-4*t+1)*t).
EXAMPLE
For n = 4 the a(4) = 5 paths are UUHD, UHHD, UHDU, UHDH, HUHD.
CROSSREFS
Sequence in context: A344847 A145129 A001793 * A317849 A307572 A325923
KEYWORD
nonn
AUTHOR
Andrei Asinowski, Jun 25 2019
STATUS
approved