[go: up one dir, main page]

login
A325916
Number of partitions of n into colored blocks of equal parts with colors from a set of size n such that the block with largest parts has the first color.
2
1, 1, 2, 5, 11, 27, 76, 177, 428, 966, 2724, 5986, 14322, 31241, 68632, 174364, 374901, 841417, 1792950, 3803764, 7688426, 18376432, 37158444, 80078021, 163155272, 335521478, 658661436, 1298215354, 2820956914, 5523327097, 11240000648, 22117134452, 43666070406
OFFSET
0,3
LINKS
FORMULA
a(n) = 1/n * [x^n] Product_{j=1..n} (1+(n-1)*x^j)/(1-x^j) for n>0, a(0)=1.
a(n) = A321880(n)/n for n > 0, a(0) = 1.
EXAMPLE
a(3) = 5: 3a, 2a1a, 2a1b, 2a1c, 111a.
MAPLE
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, k*add(
(t-> b(t, min(t, i-1), k))(n-i*j), j=1..n/i) +b(n, i-1, k)))
end:
a:= n-> `if`(n=0, 1, b(n$3)/n):
seq(a(n), n=0..34);
MATHEMATICA
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, k Sum[With[{t = n - i j}, b[t, Min[t, i - 1], k]], {j, 1, n/i}] + b[n, i - 1, k]]];
a[n_] := If[n == 0, 1, b[n, n, n]/n];
a /@ Range[0, 34] (* Jean-François Alcover, Dec 15 2020, after Alois P. Heinz *)
CROSSREFS
Cf. A321880.
Sequence in context: A027087 A363579 A055227 * A257790 A174145 A358451
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Sep 08 2019
STATUS
approved