OFFSET
1,2
COMMENTS
A binary carry of two positive integers is an overlap of the positions of 1's in their reversed binary expansion. An integer partition is binary carry-connected if the graph whose vertices are the parts and whose edges are binary carries is connected.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1) * ... * prime(y_k), so these are squarefree numbers whose prime indices are binary carry-connected. A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
EXAMPLE
The sequence of terms together with their prime indices begins:
1: {}
2: {1}
3: {2}
5: {3}
7: {4}
10: {1,3}
11: {5}
13: {6}
15: {2,3}
17: {7}
19: {8}
22: {1,5}
23: {9}
29: {10}
30: {1,2,3}
31: {11}
34: {1,7}
37: {12}
39: {2,6}
41: {13}
43: {14}
MATHEMATICA
binpos[n_]:=Join@@Position[Reverse[IntegerDigits[n, 2]], 1];
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]], 2], And[OrderedQ[#], UnsameQ@@#, Length[Intersection@@s[[#]]]>0]&]}, If[c=={}, s, csm[Sort[Append[Delete[s, List/@c[[1]]], Union@@s[[c[[1]]]]]]]]];
Select[Range[100], SquareFreeQ[#]&&Length[csm[binpos/@PrimePi/@First/@FactorInteger[#]]]<=1&]
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Mar 28 2019
STATUS
approved