OFFSET
1,6
COMMENTS
Given a finite set S of positive integers greater than one, let G(S) be the simple labeled graph with vertex set S and edges between any two vertices with a common divisor. For example, G({6,14,15,35}) is a 4-cycle. A multiset S is said to be connected if G(S) is a connected graph.
EXAMPLE
The a(19) = 6 strict integer partitions are (19), (9,6,4), (10,5,4), (10,6,3), (12,4,3), (8,6,3,2). Taking the normalized prime factors of each part (see A112798, A302242), we have the following connected multiset multisystems.
(19): {{8}}
(9,6,4): {{2,2},{1,2},{1,1}}
(10,5,4): {{1,3},{3},{1,1}}
(10,6,3): {{1,3},{1,2},{2}}
(12,4,3): {{1,1,2},{1,1},{2}}
(8,6,3,2): {{1,1,1},{1,2},{2},{1}}
MATHEMATICA
zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]], 2], And[Less@@#, GCD@@s[[#]]]>1&]}, If[c==={}, s, zsm[Union[Append[Delete[s, List/@c[[1]]], LCM@@s[[c[[1]]]]]]]]];
Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&Length[zsm[#]]===1&]], {n, 60}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, May 17 2018
STATUS
approved