[go: up one dir, main page]

login
A324831
Number of divisors d of n such that A323243(d) == 1 (mod 3).
6
0, 1, 0, 2, 1, 1, 0, 2, 0, 3, 1, 2, 0, 1, 1, 2, 1, 1, 0, 4, 0, 2, 1, 2, 2, 1, 0, 2, 0, 3, 1, 2, 1, 2, 1, 3, 0, 1, 0, 4, 1, 1, 0, 3, 1, 2, 1, 2, 0, 5, 1, 2, 0, 1, 3, 2, 0, 1, 1, 4, 0, 2, 0, 2, 1, 2, 1, 4, 1, 3, 0, 3, 1, 1, 2, 2, 1, 2, 0, 4, 0, 2, 1, 3, 2, 1, 0, 3, 0, 3, 0, 4, 1, 2, 1, 2, 1, 1, 1, 6, 0, 2, 1, 2, 1
OFFSET
1,4
FORMULA
a(n) = A000005(n) - (A324830(n) + A324832(n)).
For all n >= 1, a(A000040(n)) = A000035(n).
PROG
(PARI) A324831(n) = sumdiv(n, d, (1==(A323243(d))%3));
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Mar 16 2019
STATUS
approved