OFFSET
1,1
COMMENTS
For d >= 1 define S_d = (terms m in A324315 such that s_p(m) == d (mod p-1) if prime p divides m). Then S_1 is precisely the Carmichael numbers (A002997), S_2 is A324404, S_3 is A324405, and the union of all S_d for d >= 1 is A324315.
Subsequence of the 2-Knödel numbers (A050990). Generally, for d > 1 the terms of S_d that are greater than d form a subsequence of the d-Knödel numbers.
See Kellner and Sondow 2019.
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..2200
Bernd C. Kellner, On a product of certain primes, J. Number Theory, 179 (2017), 126-141; arXiv:1705.04303 [math.NT], 2017.
Bernd C. Kellner and Jonathan Sondow, Power-Sum Denominators, Amer. Math. Monthly, 124 (2017), 695-709; arXiv:1705.03857 [math.NT], 2017.
Bernd C. Kellner and Jonathan Sondow, On Carmichael and polygonal numbers, Bernoulli polynomials, and sums of base-p digits, Integers 21 (2021), Article #A52, 21 pp.; arXiv:1902.10672 [math.NT], 2019-2021.
EXAMPLE
1122 = 2*3*11*17 is squarefree and equals 10001100010_2, 1112120_3, 930_11, and 3f0_17 in base p = 2, 3, 11, and 17. Then s_2(1122) = 1+1+1+1 = 4 >= 2, s_3(1122) = 1+1+1+2+1+2 = 8 >= 3, s_11(1122) = 9+3 = 12 >= 11, and s_17(1122) = 3+f = 3+15 = 18 >= 17. Also, s_2(1122) = 4 == 2 (mod 1), s_3(1122) = 8 == 2 (mod 2), s_11(1122) = 12 == 2 (mod 10), and s_17(1122) = 18 == 2 (mod 16), so 1122 is a member.
MATHEMATICA
SD[n_, p_] := If[n < 1 || p < 2, 0, Plus @@ IntegerDigits[n, p]];
LP[n_] := Transpose[FactorInteger[n]][[1]];
TestSd[n_, d_] := (n > 1) && (d > 0) && SquareFreeQ[n] && VectorQ[LP[n], SD[n, #] >= # && Mod[SD[n, #] - d, # - 1] == 0 &];
Select[Range[200000], TestSd[#, 2] &]
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Bernd C. Kellner and Jonathan Sondow, Feb 26 2019
EXTENSIONS
More terms from Amiram Eldar, Dec 05 2020
STATUS
approved