[go: up one dir, main page]

login
A324272
a(n) = 2*13^(2*n).
1
2, 338, 57122, 9653618, 1631461442, 275716983698, 46596170244962, 7874752771398578, 1330833218366359682, 224910813903914786258, 38009927549761598877602, 6423677755909710210314738, 1085601540748741025543190722, 183466660386537233316799232018, 31005865605324792430539070211042
OFFSET
0,1
COMMENTS
x = A324271(n) and y = a(n) satisfy the Lebesgue-Ramanujan-Nagell equation x^2 + 7^(26*n+1) = 4*y^13 (see Theorem 2.1 in Chakraborty, Hoque and Sharma).
FORMULA
O.g.f.: 2/(1 - 169*x).
E.g.f.: 2*exp(169*x).
a(n) = 169*a(n-1) for n > 0.
a(n) = 2*169^n.
a(n) = A005843(A000290(A001022(n))).
EXAMPLE
For A324271(0) = 181 and a(0) = 2, 181^2 + 7 = 32768 = 4*2^13.
MAPLE
a:=n->2*169^n: seq(a(n), n=0..20);
MATHEMATICA
2 169^Range[0, 20]
PROG
(GAP) List([0..20], n->2*169^n);
(Magma) [2*169^n: n in [0..20]];
(PARI) a(n) = 2*169^n;
CROSSREFS
Cf. A324271: 181*13^(13*n); A000290: n^2; A001022: 13^n; A005843: 2*n.
Sequence in context: A246872 A057626 A201310 * A063968 A172136 A248172
KEYWORD
nonn,easy
AUTHOR
Stefano Spezia, Mar 28 2019
STATUS
approved