OFFSET
0,1
COMMENTS
x = A324271(n) and y = a(n) satisfy the Lebesgue-Ramanujan-Nagell equation x^2 + 7^(26*n+1) = 4*y^13 (see Theorem 2.1 in Chakraborty, Hoque and Sharma).
LINKS
K. Chakraborty, A. Hoque, R. Sharma, Complete solutions of certain Lebesgue-Ramanujan-Nagell type equations, arXiv:1812.11874 [math.NT], 2018.
Index entries for linear recurrences with constant coefficients, signature (169).
FORMULA
EXAMPLE
For A324271(0) = 181 and a(0) = 2, 181^2 + 7 = 32768 = 4*2^13.
MAPLE
a:=n->2*169^n: seq(a(n), n=0..20);
MATHEMATICA
2 169^Range[0, 20]
PROG
(GAP) List([0..20], n->2*169^n);
(Magma) [2*169^n: n in [0..20]];
(PARI) a(n) = 2*169^n;
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Stefano Spezia, Mar 28 2019
STATUS
approved