OFFSET
0,1
COMMENTS
x = a(n) and y = A324266(n) satisfy the Lebesgue-Ramanujan-Nagell equation x^2 + 7^(14*n+3) = 4*y^7 (see Theorem 2.1 in Chakraborty, Hoque and Sharma).
LINKS
K. Chakraborty, A. Hoque, R. Sharma, Complete solutions of certain Lebesgue-Ramanujan-Nagell type equations, arXiv:1812.11874 [math.NT], 2018.
Index entries for linear recurrences with constant coefficients, signature (823543).
FORMULA
EXAMPLE
For a(0) = 13 and A324266(0) = 2, 13^2 + 7^3 = 512 = 4*2^7.
MAPLE
a:=n->13*823543^n: seq(a(n), n=0..20);
MATHEMATICA
13 823543^Range[0, 20]
PROG
(GAP) List([0..20], n->13*823543^n);
(Magma) [13*823543^n: n in [0..20]];
(PARI) a(n) = 13*823543^n;
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Stefano Spezia, Mar 22 2019
STATUS
approved