[go: up one dir, main page]

login
A321820
a(n) = Sum_{d|n, n/d odd} d^12 for n > 0.
3
1, 4096, 531442, 16777216, 244140626, 2176786432, 13841287202, 68719476736, 282430067923, 1000000004096, 3138428376722, 8916117225472, 23298085122482, 56693912379392, 129746582562692, 281474976710656, 582622237229762, 1156833558212608
OFFSET
1,2
FORMULA
G.f.: Sum_{k>=1} k^12*x^k/(1 - x^(2*k)). - Ilya Gutkovskiy, Dec 22 2018
From Amiram Eldar, Nov 02 2022: (Start)
Multiplicative with a(2^e) = 2^(12*e) and a(p^e) = (p^(12*e+12)-1)/(p^12-1) for p > 2.
Sum_{k=1..n} a(k) ~ c * n^13, where c = 8191*zeta(13)/106496 = 0.0769231... . (End)
Dirichlet g.f.: zeta(s)*zeta(s-12)*(1-1/2^s). - Amiram Eldar, Jan 09 2023
MATHEMATICA
a[n_] := DivisorSum[n, #^12 &, OddQ[n/#] &]; Array[a, 20] (* Amiram Eldar, Nov 02 2022 *)
PROG
(PARI) apply( A321820(n)=sumdiv(n, d, if(bittest(n\d, 0), d^12)), [1..30]) \\ M. F. Hasler, Nov 26 2018
CROSSREFS
Cf. A321543 - A321565, A321807 - A321836 for related sequences.
Cf. A013671.
Sequence in context: A017688 A008456 A030631 * A236218 A016962 A224395
KEYWORD
nonn,mult
AUTHOR
N. J. A. Sloane, Nov 24 2018
STATUS
approved