[go: up one dir, main page]

login
A320702
Indices of primes followed by a gap (distance to next larger prime) of 8.
21
24, 72, 77, 79, 87, 92, 94, 124, 126, 128, 132, 135, 156, 158, 166, 186, 192, 196, 220, 228, 241, 246, 248, 270, 281, 299, 304, 325, 330, 334, 338, 364, 370, 379, 386, 393, 400, 413, 417, 421, 432, 436, 454, 456, 482, 488, 507, 517, 519, 538, 589, 594, 620, 640, 661, 676, 689, 691, 712, 736, 750, 759
OFFSET
1,1
COMMENTS
Indices of the primes given in A031926.
FORMULA
a(n) = A000720(A031926(n)) = A174349(4,n).
A320702 = { i > 0 | prime(i+1) = prime(i) + 8 } = A001223^(-1)({8}).
MAPLE
p:= 2: Res:= NULL: count:= 0:
for n from 1 while count < 100 do
q:= nextprime(p);
if q-p = 8 then count:= count+1; Res:= Res, n; fi;
p:= q;
od:
Res; # Robert Israel, Oct 19 2018
MATHEMATICA
Select[Range[800], Prime[#] + 8 == Prime[# + 1] &] (* Vincenzo Librandi, Mar 21 2019 *)
PROG
(PARI) A_vec(N=100, g=8, p=2, i=primepi(p)-1, L=List())={forprime(q=1+p, , i++; if(p+g==p=q, listput(L, i); N--||break)); Vec(L)}
(Magma) [n: n in [1..800] | NthPrime(n+1) - NthPrime(n) eq 8]; // Vincenzo Librandi, Mar 21 2019
CROSSREFS
Equals A000720 o A031926.
Row 4 of A174349.
Indices of 8's in A001223.
Cf. A029707, A029709, A320701, A320703, ..., A320720 (analog for gaps 2, 4, 6, 10, ..., 44), A116493 (gap 70), A116496 (gap 100), A116497 (gap 200), A116495 (gap 210).
Sequence in context: A124717 A126378 A342800 * A006352 A143337 A183006
KEYWORD
nonn
AUTHOR
M. F. Hasler, Oct 19 2018
STATUS
approved