[go: up one dir, main page]

login
A320465
a(n) = 2^n - (2^(n-1) mod n), where "mod" is the nonnegative remainder operator.
1
2, 4, 7, 16, 31, 62, 127, 256, 508, 1022, 2047, 4088, 8191, 16382, 32764, 65536, 131071, 262130, 524287, 1048568, 2097148, 4194302, 8388607, 16777208, 33554416, 67108862, 134217715, 268435448, 536870911, 1073741822, 2147483647, 4294967296, 8589934588
OFFSET
1,1
COMMENTS
Thomas Ordowski (private communication) observes that a(n) appears to be composite whenever n is composite. Is there any prime a(n) for composite n ?
Conjecture: for n > 2, a(n) is prime if and only if n is in A000043. Note that a(n) = 2^n - 1 if and only if n is an odd prime or pseudoprime to base 2 (A001567), so a counterexample cannot be a Fermat pseudoprime to base 2. - Thomas Ordowski, Oct 14 2018
LINKS
FORMULA
a(n) = 2^(n-1) + n*floor(2^(n-1)/n). (Due to Thomas Ordowski).
For k >= 0, a(2^k) = 2^(2^k) = A001146(k). For n > 1, a(prime(n)) = 2^prime(n) - 1 = A001348(n). If p is an odd prime, then a(2p) = 4^p - 2. - Thomas Ordowski, Oct 14 2018
a(n) = 2^n - 1 = A000225(n) for n in A065091 U A001567 (odd prime or pseudoprime to base 2 = Sarrus or Poulet number).
MATHEMATICA
Table[2^n-PowerMod[2, n-1, n], {n, 40}] (* Harvey P. Dale, Jun 08 2024 *)
PROG
(PARI) A320465(n)=2^n-2^(n-1)%n
CROSSREFS
A001146 is a subsequence.
Cf. A000043, A001348 (the Mersenne numbers > 3 are a subsequence).
Sequence in context: A026764 A027230 A217929 * A345333 A259544 A294376
KEYWORD
nonn
AUTHOR
M. F. Hasler, Oct 13 2018
STATUS
approved