[go: up one dir, main page]

login
A318566
Number of non-isomorphic multiset partitions of multiset partitions of multisets of size n.
23
1, 6, 21, 104, 452, 2335, 11992, 66810, 385101, 2336352, 14738380, 96831730, 659809115, 4657075074, 33974259046, 255781455848, 1984239830571, 15839628564349, 129951186405574, 1094486382191624, 9453318070371926, 83654146992936350, 757769011659766015, 7020652591448497490
OFFSET
1,2
EXAMPLE
Non-isomorphic representatives of the a(3) = 21 multiset partitions of multiset partitions:
{{{1,1,1}}}
{{{1,1,2}}}
{{{1,2,3}}}
{{{1},{1,1}}}
{{{1},{1,2}}}
{{{1},{2,3}}}
{{{2},{1,1}}}
{{{1},{1},{1}}}
{{{1},{1},{2}}}
{{{1},{2},{3}}}
{{{1}},{{1,1}}}
{{{1}},{{1,2}}}
{{{1}},{{2,3}}}
{{{2}},{{1,1}}}
{{{1}},{{1},{1}}}
{{{1}},{{1},{2}}}
{{{1}},{{2},{3}}}
{{{2}},{{1},{1}}}
{{{1}},{{1}},{{1}}}
{{{1}},{{1}},{{2}}}
{{{1}},{{2}},{{3}}}
MATHEMATICA
sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
strnorm[n_]:=Flatten[MapIndexed[Table[#2, {#1}]&, #]]&/@IntegerPartitions[n];
dubnorm[m_]:=First[Union[Table[Map[Sort, m/.Rule@@@Table[{Union[Flatten[m]][[i]], Union[Flatten[m]][[perm[[i]]]]}, {i, Length[perm]}], {0, 2}], {perm, Permutations[Union[Flatten[m]]]}]]];
Table[Length[Union[dubnorm/@Join@@mps/@Join@@mps/@strnorm[n]]], {n, 5}]
PROG
(PARI) \\ See links in A339645 for combinatorial species functions.
seq(n)={my(A=sExp(symGroupSeries(n))); NumUnlabeledObjsSeq(sCartProd(A, sExp(A)-1))} \\ Andrew Howroyd, Dec 30 2020
KEYWORD
nonn
AUTHOR
Gus Wiseman, Aug 29 2018
EXTENSIONS
Terms a(8) and beyond from Andrew Howroyd, Dec 30 2020
STATUS
approved