[go: up one dir, main page]

login
A318564
Number of multiset partitions of multiset partitions of normal multisets of size n.
16
1, 6, 36, 274, 2408, 24440, 279172, 3542798, 49354816, 747851112, 12231881948, 214593346534, 4016624367288, 79843503990710, 1678916979373760, 37215518578700028, 866953456654946948, 21167221410812128266, 540346299720320080828, 14390314687100383124540, 399023209689817997883900
OFFSET
1,2
COMMENTS
A multiset is normal if it spans an initial interval of positive integers.
EXAMPLE
The a(2) = 6 multiset partitions of multiset partitions:
{{{1,1}}}
{{{1,2}}}
{{{1},{1}}}
{{{1},{2}}}
{{{1}},{{1}}}
{{{1}},{{2}}}
MATHEMATICA
sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
allnorm[n_]:=If[n<=0, {{}}, Function[s, Array[Count[s, y_/; y<=#]+1&, n]]/@Subsets[Range[n-1]+1]];
Table[Sum[Length[mps[m]], {m, Join@@mps/@allnorm[n]}], {n, 6}]
PROG
(PARI) \\ See links in A339645 for combinatorial species functions.
seq(n)={my(A=symGroupSeries(n)); NormalLabelingsSeq(sExp(sExp(A))-1)} \\ Andrew Howroyd, Jan 01 2021
KEYWORD
nonn
AUTHOR
Gus Wiseman, Aug 29 2018
EXTENSIONS
Terms a(8) and beyond from Andrew Howroyd, Jan 01 2021
STATUS
approved