[go: up one dir, main page]

login
A318100
Exponential pseudoperfect numbers: numbers n equal to the sum of a subset of their proper exponential divisors.
6
36, 180, 252, 396, 468, 612, 684, 828, 900, 1044, 1116, 1260, 1332, 1476, 1548, 1692, 1764, 1800, 1908, 1980, 2124, 2196, 2340, 2412, 2556, 2628, 2700, 2772, 2844, 2988, 3060, 3204, 3276, 3420, 3492, 3600, 3636, 3708, 3852, 3924, 4068, 4140, 4284, 4356, 4500
OFFSET
1,1
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Eric Weisstein's World of Mathematics, e-Divisor
Eric Weisstein's World of Mathematics, e-Perfect Number
EXAMPLE
900 is in the sequence since its proper exponential divisors are 30, 60, 90, 150, 180, 300, 450 and 900 = 150 + 300 + 450.
MATHEMATICA
dQ[n_, m_] := (n>0&&m>0 &&Divisible[n, m]); expDivQ[n_, d_] := Module[ {ft=FactorInteger[n]}, And@@MapThread[dQ, {ft[[;; , 2]], IntegerExponent[ d, ft[[;; , 1]]]} ]]; eDivs[n_] := Module[ {d=Rest[Divisors[n]]}, Select[ d, expDivQ[n, #]&] ]; esigma[1]=1; esigma[n_] := Total@eDivs[n]; eDeficientQ[n_] := esigma[n] < 2n; a = {}; n = 0; While[Length[a] < 30, n++; If[eDeficientQ[n], Continue[]]; d = Most[eDivs[n]]; c = SeriesCoefficient[Series[Product[1 + x^d[[i]], {i, Length[d]}], {x, 0, n}], n]; If[c > 0, AppendTo[a, n]]]; a
PROG
(PARI) ediv(n, f=factor(n))=my(v=List(), D=apply(divisors, f[, 2]~), t=#f~); forvec(u=vector(t, i, [1, #D[i]]), listput(v, prod(j=1, t, f[j, 1]^D[j][u[j]]))); Set(v)
is(n)=my(e=ediv(n)); e=e[1..#e-1]; forsubset(#e, v, if(vecsum(vecextract(e, v))==n, return(1))); 0 \\ Charles R Greathouse IV, Oct 29 2018
CROSSREFS
The exponential version of A005835. A054979 is a subsequence.
Sequence in context: A307958 A348962 A127657 * A335218 A321145 A054979
KEYWORD
nonn
AUTHOR
Amiram Eldar, Oct 28 2018
STATUS
approved