[go: up one dir, main page]

login
A127657
Integers whose exponential aliquot sequences end in an e-perfect number.
5
36, 180, 252, 396, 468, 612, 684, 828, 900, 1044, 1116, 1260, 1332, 1352, 1476, 1548, 1692, 1728, 1800, 1908, 1980, 2124, 2196, 2340, 2412, 2556, 2628, 2700, 2772, 2844, 2880, 2916, 2988, 3000, 3060, 3204, 3276, 3420, 3492, 3636, 3708, 3750, 3852, 3924, 4068, 4140
OFFSET
1,1
LINKS
Peter Hagis, Jr., Some results concerning exponential divisors, Internat. J. Math. & Math. Sci., Vol. 11, No. 2, (1988), pp. 343-350.
J. O. M. Pedersen, Tables of Aliquot Cycles. [Broken link]
J. O. M. Pedersen, Tables of Aliquot Cycles. [Via Internet Archive Wayback-Machine]
J. O. M. Pedersen, Tables of Aliquot Cycles. [Cached copy, pdf file only]
EXAMPLE
a(5) = 468 because the fifth integer whose exponential aliquot sequences ends in an e-perfect number is 468.
MATHEMATICA
ExponentialDivisors[1]={1}; ExponentialDivisors[n_]:=Module[{}, {pr, pows}=Transpose@FactorInteger[n]; divpowers=Distribute[Divisors[pows], List]; Sort[Times@@(pr^Transpose[divpowers])]]; se[n_]:=Plus@@ExponentialDivisors[n]-n; g[n_] := If[n > 0, se[n], 0]; eTrajectory[n_] := Most[NestWhileList[g, n, UnsameQ, All]]; ExponentialPerfectNumberQ[0]=False; ExponentialPerfectNumberQ[k_Integer] :=If[se[k]==k, True, False]; Select[Range[5000], ExponentialPerfectNumberQ[Last[eTrajectory[ # ]]] &]
f[p_, e_] := DivisorSum[e, p^# &]; s[0] = s[1] = 0; s[n_] := Times @@ f @@@ FactorInteger[n] - n; q[n_] := Module[{v = NestWhileList[s, n, UnsameQ, All]}, v[[-1]] == v[[-2]] > 0]; Select[Range[4000], q] (* Amiram Eldar, Mar 11 2023 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Ant King, Jan 25 2007
STATUS
approved