[go: up one dir, main page]

login
A316656
Number of series-reduced rooted identity trees whose leaves span an initial interval of positive integers with multiplicities the integer partition with Heinz number n.
10
0, 1, 0, 1, 0, 1, 0, 4, 3, 1, 0, 9, 0, 1, 6, 26, 0, 36, 0, 16, 10, 1, 0, 92, 21, 1, 197, 25, 0, 100, 0, 236, 15, 1, 53, 474
OFFSET
1,8
COMMENTS
A rooted tree is series-reduced if every non-leaf node has at least two branches. It is an identity tree if no branch appears multiple times under the same root.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
FORMULA
a(prime(n>1)) = 0.
a(2^n) = A000311(n).
EXAMPLE
Sequence of sets of trees begins:
1:
2: 1
3:
4: (12)
5:
6: (1(12))
7:
8: (1(23)), (2(13)), (3(12)), (123)
9: (1(2(12))), (2(1(12))), (12(12))
10: (1(1(12)))
11:
12: (1(1(23))), (1(2(13))), (1(3(12))), (1(123)), (2(1(13))), (3(1(12))), ((12)(13)), (12(13)), (13(12))
MATHEMATICA
sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
gro[m_]:=If[Length[m]==1, m, Select[Union[Sort/@Join@@(Tuples[gro/@#]&/@Select[mps[m], Length[#]>1&])], UnsameQ@@#&]];
Table[Length[gro[Flatten[MapIndexed[Table[#2, {#1}]&, If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]]]]]], {n, 30}]
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Jul 09 2018
STATUS
approved