OFFSET
1,2
LINKS
Sela Fried, A307663, 2024.
FORMULA
Conjectures from Robert Israel, Oct 26 2020: (Start)
E.g.f. ((4*x^2 - 8*x + 5)*log(-x + 1))/(2*(x - 1)^2) - ((4*x^2 - 8*x + 5)*log(1 - 2*x))/(2*(x - 1)^2) + x*(-6 + 5*x)/(4*(x - 1)^2).
D-finite with recurrence 2*(n+3)*(n+2)*n*(n-2)*a(n) - (n+3)*(5*n^2-6*n-17)*a(n+1) + (4 n^2-n-29)* a(n+2) -(n-3)*a(n+3) = 0. (End)
The conjecture regarding the e.g.f. is true. See links. - Sela Fried, Jul 30 2024.
EXAMPLE
a(2) = 1! * (C(1,1)*1/1 + C(2,1)*2/1 + C(2,2)*2/2) = 6.
MATHEMATICA
Array[(# - 1)!*Sum[Sum[Binomial[i, j] i/j, {j, i}], {i, #}] &, 21] (* Michael De Vlieger, Apr 21 2019 *)
PROG
(PARI) a(n) = (n-1)!*sum(i=1, n, sum(j=1, i, binomial(i, j)*i/j)); \\ Michel Marcus, Apr 20 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Pedro Caceres, Apr 20 2019
STATUS
approved