[go: up one dir, main page]

login
A304820
A co-delta function for non-perfect powers. Dirichlet inverse of A304819.
3
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 2, 0, 0, 0, 0, 0
OFFSET
1,36
LINKS
FORMULA
a(n) = Sum_{d|n} A304779(d) * mu(n/d), where A304779 is the Dirichlet inverse of A304653.
MATHEMATICA
a[n_]:=a[n]=If[n==1, 1, -Sum[(-1)^PrimeOmega[d]*a[n/d], {d, Select[Rest[Divisors[n]], GCD@@FactorInteger[#][[All, 2]]==1&]}]];
Table[Sum[a[d]*MoebiusMu[n/d], {d, Divisors[n]}], {n, 100}]
PROG
(PARI)
A304819(n) = sumdiv(n, d, if(!ispower(d), (-1)^bigomega(d), 0));
A304820(n) = if(1==n, 1, -sumdiv(n, d, if(d<n, A304819(n/d)*A304820(d), 0))); \\ Antti Karttunen, Jul 29 2018
(PARI)
A304779(n) = if(1==n, 1, -sumdiv(n, d, if((d>1)&&!ispower(d), ((-1)^bigomega(d))*A304779(n/d), 0)));
A304820(n) = sumdiv(n, d, moebius(n/d)*A304779(d)); \\ Antti Karttunen, Jul 29 2018
CROSSREFS
Positions of nonzero entries appear to be A126706.
Sequence in context: A256574 A369427 A304819 * A162641 A333487 A348380
KEYWORD
nonn
AUTHOR
Gus Wiseman, May 19 2018
EXTENSIONS
More terms from Antti Karttunen, Jul 29 2018
STATUS
approved