[go: up one dir, main page]

login
A304095
a(n) is the number of the proper divisors of n that are Lucas numbers larger than 3 (4, 7, 11, 18, ...).
5
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 1, 0, 1, 2, 0, 0, 0, 1, 0, 1, 0, 2, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 2, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 0, 0, 1, 2, 0, 0, 1, 0, 0, 0, 2, 0, 0, 1, 2, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 2, 0, 1, 0, 2, 0, 0, 0, 2, 0, 0, 1, 1
OFFSET
1,28
COMMENTS
a(n) is the number of the proper divisors d of n that are of the form d = A000045(k-1) + A000045(k+1), for k >= 3.
LINKS
FORMULA
a(n) = Sum_{d|n, d>3, d<n} A102460(d).
a(n) = A007949(A304102(n)).
EXAMPLE
The proper divisors of 28 are 1, 2, 4, 7 and 14. Of these 4 and 7 are Lucas numbers (A000032) larger than 3, thus a(28) = 2.
PROG
(PARI)
A102460(n) = { my(u1=1, u2=3, old_u1); if(n<=2, sign(n), while(n>u2, old_u1=u1; u1=u2; u2=old_u1+u2); (u2==n)); };
A304095(n) = sumdiv(n, d, (d>3)*(d<n)*A102460(d));
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, May 13 2018
STATUS
approved