[go: up one dir, main page]

login
A303973
Total volume of all rectangular prisms with dimensions (p,p,q) such that n = p + q, p divides q and p < q.
1
0, 0, 2, 3, 4, 21, 6, 31, 62, 41, 10, 260, 12, 61, 372, 263, 16, 648, 18, 722, 868, 101, 22, 2292, 524, 121, 1700, 1544, 28, 3873, 30, 2135, 2964, 161, 2156, 7703, 36, 181, 4756, 6690, 40, 9051, 42, 4844, 11088, 221, 46, 18788, 2106, 5366, 10308, 7610, 52
OFFSET
1,3
FORMULA
a(n) = Sum_{i=1..floor((n-1)/2)} i^2 * (n-i) * (floor((n-i)/i) - floor((n-i-1)/i)).
EXAMPLE
For n =12 the prism (p,p,q) = (1,1,11) contributes 1*1*11=11 to the volume, (2,2,10) contributes 2*2*10= 40, (3,3,9) contributes 3*3*9= 81, (4,4,8) contributes 128. The total is a(12) = 11+40+81+128 = 260.
MAPLE
A303973 := proc(n)
v := 0 ;
for p from 1 to n/2 do
q := n-p ;
if p < q and modp(q, p) = 0 then
v := v+p^2*q ;
end if;
end do:
v ;
end proc:
seq(A303973(n), n=1..40) ; # R. J. Mathar, Jun 25 2018
MATHEMATICA
Table[Sum[i^2 (n - i) (Floor[(n - i)/i] - Floor[(n - i - 1)/i]), {i, Floor[(n - 1)/2]}], {n, 100}]
PROG
(Magma) [0, 0] cat [&+[k^2*(n-k)*(((n-k) div k)-((n-k-1) div k)): k in [1..((n-1) div 2)]]: n in [3..80]]; // Vincenzo Librandi, May 04 2018
CROSSREFS
Cf. A303873, A023645 (number of contributing prisms).
Sequence in context: A012575 A012580 A246391 * A225466 A225472 A176234
KEYWORD
nonn,easy
AUTHOR
Wesley Ivan Hurt, May 03 2018
STATUS
approved