[go: up one dir, main page]

login
A301848
Number of states generated by morphism during inflation stage of paper-folding sequence.
4
1, 3, 1, 4, 1, 3, 2, 4, 1, 3, 1, 4, 2, 3, 2, 4, 1, 3, 1, 4, 1, 3, 2, 4, 2, 3, 1, 4, 2, 3, 2, 4, 1, 3, 1, 4, 1, 3, 2, 4, 1, 3, 1, 4, 2, 3, 2, 4, 2, 3, 1, 4, 1, 3, 2, 4, 2, 3, 1, 4, 2, 3, 2, 4, 1, 3, 1, 4, 1, 3, 2, 4, 1, 3, 1, 4, 2, 3, 2, 4, 1, 3, 1, 4, 1, 3, 2, 4, 2, 3, 1, 4, 2, 3, 2, 4, 2, 3, 1, 4, 1
OFFSET
0,2
COMMENTS
a(0), a(1), ... is the fixed point of inflation morphism 1 -> 1 3, 2 -> 2 3, 3 -> 1 4, 4 -> 2 4, starting from state 1;
b(0), b(1), ... is the image of a(n) under encoding morphism 1 -> 0, 2 -> 1, 3 -> 0, 4 -> 1.
The number-wall over the rationals (signed Hankel determinants) is apparently free from zeros.
REFERENCES
Jean-Paul Allouche and Jeffrey O. Shallit, Automatic sequences, Cambridge, 2003, sect. 5.1.6.
LINKS
W. F. Lunnon, The number-wall algorithm: an LFSR cookbook, Journal of Integer Sequences 4 (2001), no. 1, 01.1.1.
FORMULA
a(n) = b(2n) - 2 b(2n-1) + 3, where b(n) denotes A038189(n).
MAPLE
A301848 := proc(n)
A038189(2*n)-2*A038189(2*n-1)+3 ;
end proc:
seq(A301848(n), n=0..100) ; # R. J. Mathar, Mar 30 2018
MATHEMATICA
b[n_] := If[n == 0, 0, BitGet[n, IntegerExponent[n, 2] + 1]];
a[n_] := b[2n] - 2 b[2n-1] + 3;
Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Jul 30 2023 *)
PROG
(Magma)
function b (n)
if n eq 0 then return 0; // alternatively, return 1;
else while IsEven(n) do n := n div 2; end while; end if;
return n div 2 mod 2; end function;
function a (n)
return b(n+n) - 2*b(n+n-1) + 3; end function;
nlo := 0; nhi := 32;
[a(n) : n in [nlo..nhi] ];
CROSSREFS
KEYWORD
nonn
AUTHOR
Fred Lunnon, Mar 27 2018
STATUS
approved