OFFSET
1,1
COMMENTS
In the definition, A023900(p) = 1-p. One has sign(A023900(n)) = (-1)^A001221(n), so a different solution x can only exist if x has at least 3 distinct prime factors. The smallest number of the form p*q*r such that (p-1)*(q-1)*(r-1) = P-1 for primes p, q, r, P is 2*3*7 = 42, eliminating P = 13 = A301591(1) from this sequence. This is the case whenever (P+1)/2 = p > 3 is a prime (in A005382), whence P-1 = (2-1)*(3-1)*(p-1), which eliminates all P > 5 in A005383 from this sequence. - M. F. Hasler, Aug 14 2021
LINKS
M. F. Hasler, Table of n, a(n) for n = 1..10000, Sep 01 2021
EXAMPLE
PROG
(PARI) f(n) = sumdivmult(n, d, d*moebius(d)); /* A023900 */
isok(p, vp) = {for (k=p+1, p^2-1, if (f(k) == vp, return (0)); ); return (1); }
lista(nn) = {forprime(p=2, nn, vp = f(p); if (isok(p, vp), print1(p, ", ")); ); }
(PARI) select( {is_A301590(p)=!forcomposite(k=p+1, p^2-1, A023900(k)!=1-p|| return)&& isprime(p)}, primes([1, 399])) \\ M. F. Hasler, Aug 14 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Marcus, Mar 24 2018
STATUS
approved