[go: up one dir, main page]

login
A301416
Numbers k in A301413 such that k * A002110 (m) is in A002201.
2
1, 2, 4, 12, 24, 48, 144, 720, 1440, 10080, 30240, 60480, 302400, 604800, 6652800, 19958400, 259459200, 518918400, 3632428800, 61751289600, 185253868800, 926269344000, 17599117536000, 35198235072000, 809559406656000, 1619118813312000, 4857356439936000
OFFSET
1,2
LINKS
Michael De Vlieger, Plot m = a(x) * A002110(y) at (x,y) for m in A002201, smallest 4096 terms m.
EXAMPLE
From Michael De Vlieger, May 14 2018: (Start)
Numbers m = A301416(x) * A002110(y) that are in A002201 are plotted below.
1 2 3 4 5 6 7 ...
+-----------------------------------------------
1 | 2
2 | 6 12
3 | 60 120 360
4 | 2520 5040
5 | 55440
6 | 720720 1441440 4324320
...
(End)
MATHEMATICA
t = Import["b002201.txt", "Data"][[All, -1]]; (* Uses b-file at A002201 Alternatively, use this conversion of terms at A000705 to a 10^4 term dataset for A002201. Processing 10^4 terms will take a long time: *) t = With[{s = Import["b000705.txt", "Data"][[All, -1]]}, FoldList[Times, s]]; f[n_] := With[{d = FactorInteger@ n}, If[n == 1, {0}, ReplacePart[Table[0, {PrimePi[d[[-1, 1]]]}], #] &@ Map[PrimePi@ First@ # -> Last@ # &, d]]]; Union@ Array[Times @@ MapIndexed[Prime[First@#2]^#1 &, #3] & @@ {#1, Boole[First@ #2 > 0] Length@ #2, DeleteCases[-1 + #2, 0] /. -1 -> 0} & @@ {t[[#]], f@ t[[#]]} &, Length@ t]
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael De Vlieger, Apr 09 2018
STATUS
approved