[go: up one dir, main page]

login
A299203
Number of enriched p-trees whose multiset of leaves is the integer partition with Heinz number n.
19
0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 5, 1, 3, 1, 3, 1, 1, 1, 11, 1, 1, 2, 3, 1, 5, 1, 12, 1, 1, 1, 15, 1, 1, 1, 11, 1, 4, 1, 3, 3, 1, 1, 38, 1, 3, 1, 3, 1, 9, 1, 9, 1, 1, 1, 21, 1, 1, 4, 34, 1, 4, 1, 3, 1, 5, 1, 54, 1, 1, 3, 3, 1, 4, 1, 33, 5, 1, 1, 23, 1, 1, 1, 9, 1, 20, 1, 3, 1, 1, 1, 117, 1, 3, 3, 12, 1, 4, 1, 9, 4, 1, 1, 57, 1, 4, 1, 34
OFFSET
1,8
COMMENTS
By convention, a(1) = 0.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
EXAMPLE
a(54) = 9: (((22)2)1), ((222)1), (((22)1)2), (((21)2)2), ((221)2), ((22)(21)), ((22)21), ((21)22), (2221).
a(40) = 11: ((31)(11)), (((31)1)1), ((3(11))1), ((311)1), (3((11)1)), (3(111)), (((11)1)3), ((111)3), ((31)11), (3(11)1), (3111).
a(36) = 15: ((22)(11)), ((2(11))2), (((11)2)2), (((21)1)2), ((211)2), (((22)1)1), (((21)2)1), ((221)1), ((21)(21)), (22(11)), (2(11)2), ((11)22), ((22)11), ((21)21), (2211).
MATHEMATICA
nn=120;
ptns=Table[If[n===1, {}, Join@@Cases[FactorInteger[n]//Reverse, {p_, k_}:>Table[PrimePi[p], {k}]]], {n, nn}];
tris=Join@@Map[Tuples[IntegerPartitions/@#]&, ptns];
qci[y_]:=qci[y]=If[Length[y]===1, 1, Sum[Times@@qci/@t, {t, Select[tris, And[Length[#]>1, Sort[Join@@#, Greater]===y]&]}]];
qci/@ptns
KEYWORD
nonn
AUTHOR
Gus Wiseman, Feb 05 2018
STATUS
approved