[go: up one dir, main page]

login
A299202
Moebius function of the multiorder of integer partitions indexed by their Heinz numbers.
32
0, 1, 1, -1, 1, -1, 1, 0, -1, -1, 1, 2, 1, -1, -1, -1, 1, 1, 1, 1, -1, -1, 1, -1, -1, -1, 0, 1, 1, 3, 1, 0, -1, -1, -1, -1, 1, -1, -1, -1, 1, 2, 1, 1, 1, -1, 1, 0, -1, 1, -1, 1, 1, -1, -1, -1, -1, -1, 1, -3, 1, -1, 2, 0, -1, 2, 1, 1, -1, 3, 1, 2, 1, -1, 1, 1, -1, 2, 1, 1, -1, -1, 1, -5, -1, -1, -1, -1, 1, -4
OFFSET
1,12
COMMENTS
By convention, mu() = 0.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
FORMULA
mu(y) = Sum_{g(t)=y} (-1)^d(t), where the sum is over all enriched p-trees (A289501, A299203) whose multiset of leaves is the integer partition y, and d(t) is the number of non-leaf nodes in t.
EXAMPLE
Heinz number of (2,1,1) is 12, so mu(2,1,1) = a(12) = 2.
MATHEMATICA
nn=120;
ptns=Table[If[n===1, {}, Join@@Cases[FactorInteger[n]//Reverse, {p_, k_}:>Table[PrimePi[p], {k}]]], {n, nn}];
tris=Join@@Map[Tuples[IntegerPartitions/@#]&, ptns];
mu[y_]:=mu[y]=If[Length[y]===1, 1, -Sum[Times@@mu/@t, {t, Select[tris, And[Length[#]>1, Sort[Join@@#, Greater]===y]&]}]];
mu/@ptns
KEYWORD
sign
AUTHOR
Gus Wiseman, Feb 05 2018
STATUS
approved