[go: up one dir, main page]

login
A298763
Numbers that are the smallest of four consecutive primes, no three of which sum to a nonprime.
1
19, 29, 1303, 3119, 4933, 6353, 7841, 10859, 13933, 24749, 26513, 28603, 31069, 33487, 38609, 43067, 52387, 53731, 61979, 78031, 91781, 93871, 97561, 102929, 108127, 112403, 113341, 114599, 141937, 144967, 151883, 151969, 192883, 224909, 267961, 270371, 270577, 270763, 281531, 282959, 285979
OFFSET
1,1
LINKS
EXAMPLE
19, 23, 29, 31 are four consecutive primes. The four ways of adding three of them yields 71, 73, 79, 83, all of which are prime. So 19 is a term of the sequence.
MATHEMATICA
s={2, 3, 5, 7}; p=s[[-1]]; While[p<10^6, If[PrimeQ[s[[1]]+s[[2]]+s[[3]]]&&PrimeQ[s[[1]]+s[[2]]+s[[4]]]&&PrimeQ[s[[1]]+s[[3]]+s[[4]]]&&PrimeQ[s[[2]]+s[[3]]+s[[4]]], Print[s[[1]]]]; p=NextPrime[p]; s=Join[Rest[s], {p}]]
CROSSREFS
Subsequence of A073681.
Sequence in context: A038542 A269262 A166659 * A309962 A316678 A330275
KEYWORD
nonn
AUTHOR
Hans Havermann, Jan 26 2018
STATUS
approved